3.4.65 \(\int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\) [365]

3.4.65.1 Optimal result
3.4.65.2 Mathematica [C] (verified)
3.4.65.3 Rubi [A] (warning: unable to verify)
3.4.65.4 Maple [B] (verified)
3.4.65.5 Fricas [A] (verification not implemented)
3.4.65.6 Sympy [F]
3.4.65.7 Maxima [F(-2)]
3.4.65.8 Giac [F(-1)]
3.4.65.9 Mupad [B] (verification not implemented)

3.4.65.1 Optimal result

Integrand size = 28, antiderivative size = 362 \[ \int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\frac {b B \text {arctanh}\left (\frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}} d}-\frac {b B \text {arctanh}\left (\frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}} d}+\frac {b B \log \left (a+\sqrt {a^2+b^2}+b \tan (c+d x)-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}-\frac {b B \log \left (a+\sqrt {a^2+b^2}+b \tan (c+d x)+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d} \]

output
1/2*b*B*arctanh(((a+(a^2+b^2)^(1/2))^(1/2)-2^(1/2)*(a+b*tan(d*x+c))^(1/2)) 
/(a-(a^2+b^2)^(1/2))^(1/2))/d*2^(1/2)/(a-(a^2+b^2)^(1/2))^(1/2)-1/2*b*B*ar 
ctanh(((a+(a^2+b^2)^(1/2))^(1/2)+2^(1/2)*(a+b*tan(d*x+c))^(1/2))/(a-(a^2+b 
^2)^(1/2))^(1/2))/d*2^(1/2)/(a-(a^2+b^2)^(1/2))^(1/2)+1/4*b*B*ln(a+(a^2+b^ 
2)^(1/2)-2^(1/2)*(a+(a^2+b^2)^(1/2))^(1/2)*(a+b*tan(d*x+c))^(1/2)+b*tan(d* 
x+c))/d*2^(1/2)/(a+(a^2+b^2)^(1/2))^(1/2)-1/4*b*B*ln(a+(a^2+b^2)^(1/2)+2^( 
1/2)*(a+(a^2+b^2)^(1/2))^(1/2)*(a+b*tan(d*x+c))^(1/2)+b*tan(d*x+c))/d*2^(1 
/2)/(a+(a^2+b^2)^(1/2))^(1/2)
 
3.4.65.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.24 \[ \int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=-\frac {i B \left (\sqrt {a-i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )-\sqrt {a+i b} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )\right )}{d} \]

input
Integrate[(a*B + b*B*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]],x]
 
output
((-I)*B*(Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]] - S 
qrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]]))/d
 
3.4.65.3 Rubi [A] (warning: unable to verify)

Time = 0.61 (sec) , antiderivative size = 403, normalized size of antiderivative = 1.11, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {2011, 3042, 3966, 483, 1449, 1142, 25, 27, 1083, 219, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\)

\(\Big \downarrow \) 2011

\(\displaystyle B \int \sqrt {a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \sqrt {a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 3966

\(\displaystyle \frac {b B \int \frac {\sqrt {a+b \tan (c+d x)}}{\tan ^2(c+d x) b^2+b^2}d(b \tan (c+d x))}{d}\)

\(\Big \downarrow \) 483

\(\displaystyle \frac {2 b B \int \frac {b^2 \tan ^2(c+d x)}{b^4 \tan ^4(c+d x)-2 a b^2 \tan ^2(c+d x)+a^2+b^2}d\sqrt {a+b \tan (c+d x)}}{d}\)

\(\Big \downarrow \) 1449

\(\displaystyle \frac {2 b B \left (\frac {\int \frac {\sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)-\sqrt {2} b \sqrt {a+\sqrt {a^2+b^2}} \tan (c+d x)+\sqrt {a^2+b^2}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\int \frac {\sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {2} b \sqrt {a+\sqrt {a^2+b^2}} \tan (c+d x)+\sqrt {a^2+b^2}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {2 b B \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {1}{2} \int -\frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 b B \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {1}{2} \int \frac {\sqrt {2} \left (\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}\right )}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 b B \left (\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {2 b B \left (\frac {-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{2 \left (a-\sqrt {a^2+b^2}\right )-b^2 \tan ^2(c+d x)}d\left (2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}\right )-\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \int \frac {1}{2 \left (a-\sqrt {a^2+b^2}\right )-b^2 \tan ^2(c+d x)}d\left (\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+2 \sqrt {a+b \tan (c+d x)}\right )+\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 b B \left (\frac {-\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {\int \frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{b^2 \tan ^2(c+d x)+\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}}d\sqrt {a+b \tan (c+d x)}}{\sqrt {2}}+\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 b B \left (\frac {\frac {1}{2} \log \left (-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )-\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {2 \sqrt {a+b \tan (c+d x)}-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}-\frac {\frac {\sqrt {\sqrt {a^2+b^2}+a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}+2 \sqrt {a+b \tan (c+d x)}}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {a-\sqrt {a^2+b^2}}}+\frac {1}{2} \log \left (\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+b^2 \tan ^2(c+d x)\right )}{2 \sqrt {2} \sqrt {\sqrt {a^2+b^2}+a}}\right )}{d}\)

input
Int[(a*B + b*B*Tan[c + d*x])/Sqrt[a + b*Tan[c + d*x]],x]
 
output
(2*b*B*((-((Sqrt[a + Sqrt[a^2 + b^2]]*ArcTanh[(-(Sqrt[2]*Sqrt[a + Sqrt[a^2 
 + b^2]]) + 2*Sqrt[a + b*Tan[c + d*x]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + b^2]] 
)])/Sqrt[a - Sqrt[a^2 + b^2]]) + Log[Sqrt[a^2 + b^2] + b^2*Tan[c + d*x]^2 
- Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]]/2)/(2*Sqrt[2 
]*Sqrt[a + Sqrt[a^2 + b^2]]) - ((Sqrt[a + Sqrt[a^2 + b^2]]*ArcTanh[(Sqrt[2 
]*Sqrt[a + Sqrt[a^2 + b^2]] + 2*Sqrt[a + b*Tan[c + d*x]])/(Sqrt[2]*Sqrt[a 
- Sqrt[a^2 + b^2]])])/Sqrt[a - Sqrt[a^2 + b^2]] + Log[Sqrt[a^2 + b^2] + b^ 
2*Tan[c + d*x]^2 + Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d* 
x]]]/2)/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]])))/d
 

3.4.65.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 483
Int[Sqrt[(c_) + (d_.)*(x_)]/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[2*d 
Subst[Int[x^2/(b*c^2 + a*d^2 - 2*b*c*x^2 + b*x^4), x], x, Sqrt[c + d*x]], x 
] /; FreeQ[{a, b, c, d}, x]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1449
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = 
Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*r)   Int[x^(m - 1)/(q 
 - r*x + x^2), x], x] - Simp[1/(2*c*r)   Int[x^(m - 1)/(q + r*x + x^2), x], 
 x]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 1] && LtQ[m, 
3] && NegQ[b^2 - 4*a*c]
 

rule 2011
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c + d*x 
, a + b*x])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3966
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Su 
bst[Int[(a + x)^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c 
, d, n}, x] && NeQ[a^2 + b^2, 0]
 
3.4.65.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(661\) vs. \(2(291)=582\).

Time = 0.12 (sec) , antiderivative size = 662, normalized size of antiderivative = 1.83

method result size
derivativedivides \(-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d b}+\frac {B \left (a^{2}+b^{2}\right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d b \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {B \,a^{2} \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d b \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d b}-\frac {B \left (a^{2}+b^{2}\right ) \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d b \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {B \,a^{2} \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d b \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(662\)
default \(-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d b}+\frac {B \left (a^{2}+b^{2}\right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d b \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {B \,a^{2} \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d b \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {a^{2}+b^{2}}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d b}-\frac {B \left (a^{2}+b^{2}\right ) \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d b \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {B \,a^{2} \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d b \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(662\)
parts \(\text {Expression too large to display}\) \(1894\)

input
int((B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/4/d/b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^ 
(1/2)+(a^2+b^2)^(1/2))*B*(a^2+b^2)^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/d 
*B/b*(a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1 
/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/4/d/b* 
ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^ 
2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/d*B/b*a^2/(2*(a^2+b^2)^( 
1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^( 
1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/4/d/b*ln((a+b*tan(d*x+c))^(1/2)*(2* 
(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(a^2+b^2)^(1/ 
2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/d*B/b*(a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a) 
^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2* 
(a^2+b^2)^(1/2)-2*a)^(1/2))-1/4/d/b*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2) 
^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a 
)^(1/2)*a+1/d*B/b*a^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^( 
1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))
 
3.4.65.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 399, normalized size of antiderivative = 1.10 \[ \int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=-\frac {1}{2} \, \sqrt {-\frac {B^{2} a + \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{2}}{d^{2}}} \log \left (\sqrt {b \tan \left (d x + c\right ) + a} B^{3} b + \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{3} \sqrt {-\frac {B^{2} a + \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{2}}{d^{2}}}\right ) + \frac {1}{2} \, \sqrt {-\frac {B^{2} a + \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{2}}{d^{2}}} \log \left (\sqrt {b \tan \left (d x + c\right ) + a} B^{3} b - \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{3} \sqrt {-\frac {B^{2} a + \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{2}}{d^{2}}}\right ) + \frac {1}{2} \, \sqrt {-\frac {B^{2} a - \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{2}}{d^{2}}} \log \left (\sqrt {b \tan \left (d x + c\right ) + a} B^{3} b + \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{3} \sqrt {-\frac {B^{2} a - \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{2}}{d^{2}}}\right ) - \frac {1}{2} \, \sqrt {-\frac {B^{2} a - \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{2}}{d^{2}}} \log \left (\sqrt {b \tan \left (d x + c\right ) + a} B^{3} b - \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{3} \sqrt {-\frac {B^{2} a - \sqrt {-\frac {B^{4} b^{2}}{d^{4}}} d^{2}}{d^{2}}}\right ) \]

input
integrate((B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas 
")
 
output
-1/2*sqrt(-(B^2*a + sqrt(-B^4*b^2/d^4)*d^2)/d^2)*log(sqrt(b*tan(d*x + c) + 
 a)*B^3*b + sqrt(-B^4*b^2/d^4)*d^3*sqrt(-(B^2*a + sqrt(-B^4*b^2/d^4)*d^2)/ 
d^2)) + 1/2*sqrt(-(B^2*a + sqrt(-B^4*b^2/d^4)*d^2)/d^2)*log(sqrt(b*tan(d*x 
 + c) + a)*B^3*b - sqrt(-B^4*b^2/d^4)*d^3*sqrt(-(B^2*a + sqrt(-B^4*b^2/d^4 
)*d^2)/d^2)) + 1/2*sqrt(-(B^2*a - sqrt(-B^4*b^2/d^4)*d^2)/d^2)*log(sqrt(b* 
tan(d*x + c) + a)*B^3*b + sqrt(-B^4*b^2/d^4)*d^3*sqrt(-(B^2*a - sqrt(-B^4* 
b^2/d^4)*d^2)/d^2)) - 1/2*sqrt(-(B^2*a - sqrt(-B^4*b^2/d^4)*d^2)/d^2)*log( 
sqrt(b*tan(d*x + c) + a)*B^3*b - sqrt(-B^4*b^2/d^4)*d^3*sqrt(-(B^2*a - sqr 
t(-B^4*b^2/d^4)*d^2)/d^2))
 
3.4.65.6 Sympy [F]

\[ \int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=B \int \sqrt {a + b \tan {\left (c + d x \right )}}\, dx \]

input
integrate((B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))**(1/2),x)
 
output
B*Integral(sqrt(a + b*tan(c + d*x)), x)
 
3.4.65.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima 
")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(b-a>0)', see `assume?` for more 
details)Is
 
3.4.65.8 Giac [F(-1)]

Timed out. \[ \int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((B*a+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.4.65.9 Mupad [B] (verification not implemented)

Time = 9.98 (sec) , antiderivative size = 3033, normalized size of antiderivative = 8.38 \[ \int \frac {a B+b B \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

input
int((B*a + B*b*tan(c + d*x))/(a + b*tan(c + d*x))^(1/2),x)
 
output
2*atanh((8*a*b^2*(a + b*tan(c + d*x))^(1/2)*(- (-16*B^4*a^4*b^2*d^4)^(1/2) 
/(16*(a^2*d^4 + b^2*d^4)) - (B^2*a^3*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*( 
-16*B^4*a^4*b^2*d^4)^(1/2))/((16*B^3*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (1 
6*B^3*a^6*b^3*d^5)/(a^2*d^4 + b^2*d^4) + (4*B*a^3*b^3*d^4*(-16*B^4*a^4*b^2 
*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*B*a*b^5*d^4*(-16*B^4*a^4*b^2*d^4)^(1 
/2))/(a^2*d^5 + b^2*d^5)) - (32*B^2*a^2*b^2*(a + b*tan(c + d*x))^(1/2)*(- 
(-16*B^4*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (B^2*a^3*d^2)/(4*(a 
^2*d^4 + b^2*d^4)))^(1/2))/((16*B^3*a^4*b^3*d^3)/(a^2*d^4 + b^2*d^4) + (4* 
B*a*b^3*d^2*(-16*B^4*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (32*B^2*a^ 
4*b^2*d^2*(a + b*tan(c + d*x))^(1/2)*(- (-16*B^4*a^4*b^2*d^4)^(1/2)/(16*(a 
^2*d^4 + b^2*d^4)) - (B^2*a^3*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2))/((16*B^ 
3*a^4*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (16*B^3*a^6*b^3*d^5)/(a^2*d^4 + b^2*d 
^4) + (4*B*a^3*b^3*d^4*(-16*B^4*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + 
(4*B*a*b^5*d^4*(-16*B^4*a^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*(- (-16* 
B^4*a^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (B^2*a^3*d^2)/(4*(a^2*d^ 
4 + b^2*d^4)))^(1/2) - 2*atanh((8*a*b^2*((-16*B^4*b^6*d^4)^(1/2)/(16*(a^2* 
d^4 + b^2*d^4)) + (B^2*a*b^2*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*ta 
n(c + d*x))^(1/2)*(-16*B^4*b^6*d^4)^(1/2))/((16*B^3*a^2*b^7*d^5)/(a^2*d^4 
+ b^2*d^4) - 16*B^3*a^2*b^5*d - 16*B^3*b^7*d + (16*B^3*a^4*b^5*d^5)/(a^2*d 
^4 + b^2*d^4) + (4*B*a^3*b^3*d^4*(-16*B^4*b^6*d^4)^(1/2))/(a^2*d^5 + b^...